Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus.

نویسندگان

  • Dag Alnæs
  • Markus Handal Sneve
  • Thomas Espeseth
  • Tor Endestad
  • Steven Harry Pieter van de Pavert
  • Bruno Laeng
چکیده

Attentional effort relates to the allocation of limited-capacity attentional resources to meet current task demands and involves the activation of top-down attentional systems in the brain. Pupillometry is a sensitive measure of this intensity aspect of top-down attentional control. Studies relate pupillary changes in response to cognitive processing to activity in the locus coeruleus (LC), which is the main hub of the brain's noradrenergic system and it is thought to modulate the operations of the brain's attentional systems. In the present study, participants performed a visual divided attention task known as multiple object tracking (MOT) while their pupil sizes were recorded by use of an infrared eye tracker and then were tested again with the same paradigm while brain activity was recorded using fMRI. We hypothesized that the individual pupil dilations, as an index of individual differences in mental effort, as originally proposed by Kahneman (1973), would be a better predictor of LC activity than the number of tracked objects during MOT. The current results support our hypothesis, since we observed pupil-related activity in the LC. Moreover, the changes in the pupil correlated with activity in the superior colliculus and the right thalamus, as well as cortical activity in the dorsal attention network, which previous studies have shown to be strongly activated during visual tracking of multiple targets. Follow-up pupillometric analyses of the MOT task in the same individuals also revealed that individual differences to cognitive load can be remarkably stable over a lag of several years. To our knowledge this is the first study using pupil dilations as an index of attentional effort in the MOT task and also relating these to functional changes in the brain that directly implicate the LC-NE system in the allocation of processing resources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robot control system using SMR signals detection

One of the important issues in designing a brain-computer interface system is to select the type of mental activity to be imagined. In some of these systems, mental activity varies with user intent and action that must be controlled by the brain-computer system, and in a number of other signals, the received signals contain the same activity-related mental activity that should be performed by t...

متن کامل

The effects of locus coeruleus electrical stimulation on brain waves of morphine dependent rats

Introduction: Opiates cause dependency via affect on central nervous system. Locus coeruleus nucleus is a main group of noradrenergic neurons in the brain that plays an important role in the expression of opioid withdrawal signs. During opioid withdrawal, brain waves change in addition to physical and behavioral signs. In this study, we examined the effects of locus coeruleus electrical sti...

متن کامل

The effects of tramadol on norepinephrine and MHPG releasing in locus coeruleus in formalin test in rats: a brain stereotaxic study

Objective(s):The relationship between tramadol, as an antinociceptive drug, and locus coeruleus (LC), the main noradrenergic nucleus of the brain that affects regulation and modulation of pain through descending noradrenergic pathways was investigated. Materials and Methods: Male Sprague-Dawley rats were divided into four groups of 10 rats. The rats were fixed in stereotaxic instrument and then...

متن کامل

The effect of morphine on some electrophysiological parameters of paragigantocellularis and locus coeruleus nuclei interconnections

As one of the most important diffused brain modulatory systems, the nucleus locus coeruleus (LC) receives most of its afferents from the nucleus paragigantocellularis (PGi) and plays a major role in the control of drug dependence and some emotional and exciting states. For detailed investigation of the effect of morphine on relationship between these two brain stem nuclei, the activity of the r...

متن کامل

The effect of morphine on some electrophysiological parameters of paragigantocellularis and locus coeruleus nuclei interconnections

As one of the most important diffused brain modulatory systems, the nucleus locus coeruleus (LC) receives most of its afferents from the nucleus paragigantocellularis (PGi) and plays a major role in the control of drug dependence and some emotional and exciting states. For detailed investigation of the effect of morphine on relationship between these two brain stem nuclei, the activity of the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2014